PFAS-Labortest von rivaALVA MEX Mineral-Filtergranulat* im Vergleich zu Ionentauscherharz und Aktivkohle

Die Batch- und Säulenadsorptionsexperimente wurden durchgeführt, um die Wirksamkeit von rivaALVA MEX Medien, Aktivkohle (AC) und Ionenaustauschharz (IX) bei der Entfernung von zwölf PFAS-Verbindungen aus kontaminiertem Wasser zu bewerten.

Die Batch-Adsorptionstests zeigten signifikante Unterschiede in der Adsorptionsleistung der drei Medientypen. Das rivaALVA MEX-Medium zeigte durchweg eine überlegene Adsorptionseffizienz (~99%) für alle getesteten PFAS-Verbindungen, während Aktivkohle und Ionenaustauscherharz niedrigere Entfernungseffizienzen aufwiesen, die je nach PFAS-Typ zwischen 20-55% lagen.

Die Säulenexperimente bestätigten diese Trends und zeigten, dass die rivaALVA MEX-Medien eine nahezu vollständige Entfernung von PFAS-Verbindungen erreichten und die Abwasserkonzentrationen in allen Fällen unter 1 mg/L hielten. Im Gegensatz dazu zeigten Aktivkohle und Ionenaustauscherharz eine viel geringere Entfernungseffizienz, wobei die PFAS-Konzentrationen im Abwasser im Bereich von 45-80 mg/L blieben, was auf einen schnelleren Durchbruch und eine geringere Adsorptionskapazität hindeutet.

The batch and column adsorption experiments were conducted to evaluate the effectiveness of rivaALVA MEX media, activated carbon (AC), and ion exchange (IX) resin in removing twelve PFAS compounds from contaminated water.

The batch adsorption tests revealed significant differences in adsorption performance across the three media types. rivaALVA MEX media consistently demonstrated superior adsorption efficiency (~99%) for all tested PFAS compounds, whereas activated carbon and ion exchange resin showed lower removal efficiencies, ranging between 20-55% depending on the PFAS type.

The column experiments confirmed these trends, showing that RivaALVA MEX media achieved a near-complete removal of PFAS compounds, maintaining effluent concentrations below 1 mg/L in all cases. In contrast, activated carbon and ion exchange resin exhibited much lower removal efficiencies, with effluent PFAS concentrations remaining in the range of 45-80 mg/L, indicating a faster breakthrough and reduced adsorption capacity.

Testlösungen für die Analyse

Zubereitung von **12 separaten PFAS-Lösungen** (6 kurzkettige und 6 langkettige PFAS-Moleküle) mit einer Anfangskonzentration von 100 mg/L in einem 500-mL-Becherglas, wobei eine ordnungsgemäße Auflösung und Homogenität vor dem Test sichergestellt wurde.

Sampling for the analyze

To prepare **12 separate PFAS solutions** (6 short-chain and 6 long-chain PFAS molecules) at an initial concentration of **100 mg/L** in a **500 mL beaker**, ensuring proper dissolution and homogeneity before testing.

[•] rivaALVA MEX Mineral-Filtergranulat Testergebnisse = Auszug aus den Laboranalysen des Filtermaterial-Entwicklers und Produzenten (umfängliche wissenschaftliche Laborprüfungen / Batch-Test), Testjahr 2024

^{*} rivaALVA MEX mineral filter granulate test results = extract from the laboratory analyses of the filter material developer and producer (extensive scientific laboratory tests / batch test), test year 2024

Vergleichsprüfung der Adsorptionskapazität der rivaALVA MEX-Granulate im Vergleich zu Ionentauscherharz (Ion Exchange Resin) und Aktivkohle (Activated Carbon).

Comparative test of the adsorption capacity of rivaALVA MEX granules compared to ion exchange resin and activated carbon.

Filtermaterial / Media	Startkonzentration	Abwasser Konzentration	Filterungseffizienz
Type + PFAS Verbindung /	Initial Concentration	Effluent Concentration	Removal Efficiency
Compound	(mg/L)	(mg/L)	(%)
	(3,)	3, 7	
Ion Exchange Resin - PFOS	100	69,12	30,88
Ion Exchange Resin - PFOA	100	68,62	31,38
Ion Exchange Resin – PFHxS	100	54,46	45,54
Ion Exchange Resin - PFHxA	100	57,69	42,31
Ion Exchange Resin - PFBS	100	48,95	51,05
Ion Exchange Resin - PFBA	100	63,47	36,53
Ion Exchange Resin - PFNA	100	75,81	24,19
Ion Exchange Resin - PFDA	100	55,04	44,96
Ion Exchange Resin - PFUnDA	100	53,37	46,63
Ion Exchange Resin - PFDoDA	100	60,36	39,64
Ion Exchange Resin - PFTrDA	100	53,02	46,98
Ion Exchange Resin - PFTeDA	100	62,72	37,28
Activated Carbon - PFOS	100	61,7	38,3
Activated Carbon - PFOA	100	65,04	34,96
Activated Carbon - PFHxS	100	79,11	20,89
Activated Carbon - PFHxA	100	76,22	23,78
Activated Carbon - PFBS	100	78,9	21,1
Activated Carbon - PFBA	100	57,73	42,27
Activated Carbon - PFNA	100	69	31
Activated Carbon - PFDA	100	62,2	37,8
Activated Carbon - PFUnDA	100	48,24	51,76
Activated Carbon - PFDoDA	100	71,27	28,73
Activated Carbon - PFTrDA	100	65,64	34,36
Activated Carbon - PFTeDA	100	53,56	46,44
rivaALVA MEX - PFOS	100	1	99
rivaALVA MEX - PFOA	100	1	99
rivaALVA MEX - PFHxS	100	1	99
rivaALVA MEX - PFHxA	100	1	99
rivaALVA MEX - PFBS	100	1	99
rivaALVA MEX - PFBA	100	1	99
rivaALVA MEX - PFNA	100	1	99
rivaALVA MEX - PFDA	100	1	99
rivaALVA MEX - PFUnDA	100	1	99
rivaALVA MEX - PFDoDA	100	1	99
rivaALVA MEX - PFTrDA	100	1	99
rivaALVA MEX - PFTeDA	100	1	99

[•] rivaALVA MEX Mineral-Filtergranulat Testergebnisse = Auszug aus den Laboranalysen des Filtermaterial-Entwicklers und Produzenten (umfängliche wissenschaftliche Laborprüfungen / Batch-Test), Testjahr 2024

^{*} rivaALVA MEX mineral filter granulate test results = extract from the laboratory analyses of the filter material developer and producer (extensive scientific laboratory tests / batch test), test year 2024

Durchbruchskurven und Adsorptionskinetik

Um die Adsorptionskinetik und -leistung im Laufe der Zeit weiter zu bewerten, wurden Durchbruchskurven erstellt.

Zur weiteren Bewertung der Adsorptionskinetik und -leistung im Zeitverlauf wurden Durchbruchskurven erstellt durch die Überwachung der PFAS-Konzentrationen im Abwasser in regelmäßigen Abständen erstellt.

rivaALVA MEX Filtergranulat

Während des Testzeitraums wurde kein Durchbruch beobachtet, da die PFAS-Konzentrationen im Abwasser während des gesamten Säulenlaufs unter 1 mg/L blieben. Dies zeigt, dass das rivaALVA MEX Medium eine hohe Adsorptionskapazität und eine stabile Lebensdauer haben, bevor sie ausgetauscht werden müssen. Die Form der Durchbruchskurve deutet auf einen allmählichen, kontrollierten Adsorptionsprozess hin, der das Risiko einer plötzlichen Schadstofffreisetzung minimiert.

Breakthrough Curves and Adsorption Kinetics

To further assess the adsorption kinetics and performance over time, breakthrough curves were generated by monitoring the effluent PFAS concentrations at regular intervals.

rivaALVA MEX Filtergranulat

Breakthrough was not observed within the tested period, as the effluent PFAS concentrations remained below 1 mg/L throughout the column run. This indicates that rivaALVA MEX media has a high adsorption capacity and a stable operational lifespan before requiring replacement. The shape of the breakthrough curve suggests a gradual, controlled adsorption process, minimizing the risk of sudden contaminant release.

Filtermaterial Media Type	Startkonzentration Initial Concentration (mg/L)	Abwasser Konzentration Effluent Concentration (mg/L)	Filterungseffizienz Removal Efficiency (%)
rivaALVA MEX	<mark>100</mark>	<mark>0.5 - 1.5</mark>	<mark>98-99%</mark>
Activated Carbon	100	45 - 80	20-55%
Ion ExchangeResin	100	45 - 80	20-55%

[•] rivaALVA MEX Mineral-Filtergranulat Testergebnisse = Auszug aus den Laboranalysen des Filtermaterial-Entwicklers und Produzenten (umfängliche wissenschaftliche Laborprüfungen / Batch-Test), Testjahr 2024

^{*} rivaALVA MEX mineral filter granulate test results = extract from the laboratory analyses of the filter material developer and producer (extensive scientific laboratory tests / batch test), test year 2024

Vollständige Bezeichnungen der PFAS-Abkürzungen

Langkettige / long-chain PFAS

Perfluoroctansäure / Perfluorooctanoic acid (PFOA)

Perfluorcarbonsäure mit acht Kohlenstoffatomen (C₈HF₁₅O₂)

Perfluoroctansulfonsäure / Perfluorooctane sulfonic acid (PFOS)

Perfluorsulfonsäure mit acht Kohlenstoffatomen (C₈HO₃F₁₇S) /

Perfluornonansäure / Perfluorononanoic acid (PFNA)

Perfluorcarbonsäure mit neun Kohlenstoffatomen (C₉HO₂F₁₇)

Perfluordecansäure (PFDA)

Perfluorcarbonsäure mit zehn Kohlenstoffatomen (C₁₀HO₂F₁₉)

Perfluorundecansäure (PFUnDA)

Perfluorcarbonsäure mit elf Kohlenstoffatomen (C₁₁HO₂F₂₁)

Perfluordodecansäure (PFDoA)

Perfluorcarbonsäure mit zwölf Kohlenstoffatomen (C₁₂HO₂F₂₃)

Kurzkettige / short-chain PFAS

Perfluorhexansäure (PFHxA)

Perfluorcarbonsäure mit sechs Kohlenstoffatomen (C₆HO₂F₁₁).

Perfluorheptansäure (PFHpA)

Perfluorcarbonsäure mit sieben Kohlenstoffatomen (C7HO2F13)

Perfluorbutansulfonsäure (PFBS)

Perfluorsulfonsäure mit vier Kohlenstoffatomen (C₄HO₃F₀S)

Perfluorhexansulfonsäure (PFHxS)

Perfluorsulfonsäure mit sechs Kohlenstoffatomen (C₆HO₃F₁₃S)

Perfluorbutansäure (PFBA)

Perfluorcarbonsäure mit vier Kohlenstoffatomen (C₄HO₂F₇)

Perfluornonansulfonsäure (PFNS)

Perfluorsulfonsäure mit neun Kohlenstoffatomen (C₉HO₃F₁₇S)

Strukturmerkmale / structural features

Alle genannten Verbindungen gehören zur Gruppe der **Perfluoralkylsäuren (PFAA)** oder **Perfluorsulfonsäuren (PFSA)** 15. Die Abkürzungen folgen dem Schema:

- PFCA: Perfluorcarbonsäuren (z. B. PFOA, PFNA)
- PFSA: Perfluorsulfonsäuren (z. B. PFOS, PFBS)
- **PFHxA/PFHpA**: Bezeichnungen für Carbonsäuren mit angehängter Kettenlänge (Hexa-/Hepta-).

[·] rivaALVA MEX Mineral-Filtergranulat Testergebnisse = Auszug aus den Laboranalysen des Filtermaterial-Entwicklers und Produzenten (umfängliche wissenschaftliche Laborprüfungen / Batch-Test), Testjahr 2024

^{*} rivaALVA MEX mineral filter granulate test results = extract from the laboratory analyses of the filter material developer and producer (extensive scientific laboratory tests / batch test), test year 2024

Complete names of the PFAS abbreviations

Long-chain PFAS

Perfluorooctanoic acid (PFOA)

Perfluorocarboxylic acid with eight carbon atoms (C₈HF₁₅O₂)

Perfluorooctane sulfonic acid (PFOS)

Perfluorosulfonic acid with eight carbon atoms (C₈HO₃F₁₇S)

Perfluorononanoic acid (PFNA)

Perfluorocarboxylic acid with nine carbon atoms (C₉HO₂F₁₇)

Perfluorodecanoic acid (PFDA)

Perfluorocarboxylic acid with ten carbon atoms (C₁₀HO₂F₁₉)

Perfluoroundecanoic acid (PFUnDA)

Perfluorocarboxylic acid with eleven carbon atoms (C₁₁HO₂F₂₁)

Perfluorododecanoic acid (PFDoA)

Perfluorocarboxylic acid with twelve carbon atoms (C₁₂HO₂F₂₃)

Short-chain PFAS

Perfluorohexanoic acid (PFHxA)

Perfluorocarboxylic acid with six carbon atoms (C₆HO₂F₁₁).

Perfluoroheptanoic acid (PFHpA)

Perfluorocarboxylic acid with seven carbon atoms (C₇HO₂F₁₃)

Perfluorobutane sulfonic acid (PFBS)

Perfluorosulfonic acid with four carbon atoms (C₄HO₃F₀S)

Perfluorohexanesulfonic acid (PFHxS)

Perfluorosulfonic acid with six carbon atoms (C₆HO₃F₁₃S)

Perfluorobutanoic acid (PFBA)

Perfluorocarboxylic acid with four carbon atoms (C₄HO₂F₇)

Perfluoronanesulfonic acid (PFNS)

Perfluorosulfonic acid with nine carbon atoms (C₉HO₃F₁₇S)

Structural features

All compounds mentioned belong to the group of perfluoroalkyl acids (PFAA) or perfluorosulfonic acids (PFSA)15. The abbreviations follow the scheme:

- PFCA: Perfluorocarboxylic acids (e.g. PFOA, PFNA)
- PFSA: Perfluorosulfonic acids (e.g. PFOS, PFBS)
- PFHxA/PFHpA: Designations for carboxylic acids with attached chain length (hexa-/hepta-).

[•] rivaALVA MEX Mineral-Filtergranulat Testergebnisse = Auszug aus den Laboranalysen des Filtermaterial-Entwicklers und Produzenten (umfängliche wissenschaftliche Laborprüfungen / Batch-Test), Testjahr 2024

^{*} rivaALVA MEX mineral filter granulate test results = extract from the laboratory analyses of the filter material developer and producer (extensive scientific laboratory tests / batch test), test year 2024